Force Balanced DC Transmission Lines

Kurt Nalty

November 1, 2011

Eric Dollard's DC Transmission Line Exercise

Eric posted a transmission line puzzle. Here is my answer

****** Original Posting **************

I have a D.C. transmission line, the conductors are 2 inches in diameter, spacing is 18 feet.

How many ounces of force are developed upon a 600 foot span of this line, for the following;

- 1. 1000 ampere line current,
- 2. 1000 KV line potential?

My Answer

First, find the magnetic repulsion between the two conductors by calculating B, then getting forces by $J \times B$.

Calculate B using the infinite line approximation.

$$B = \mu_0 H = \mu_0 \frac{I}{2\pi r}$$

 $r = 18 \text{ feet} = 5.48 \text{ m}$
 $I = 1000 \text{ A}$
 $B = (4\pi 10^{-7} * 1000)/(2\pi 5.48) = 11.6 \ \mu\text{T}$

This field is small compared to terrestrial fields, which are around 100 μ T.

We now calculate the force per length.

$$f = \vec{j} \times \vec{B}$$
 body force
 $F = \int \vec{j} \times \vec{B} dA dl$
 $= I * B * l$
 $= 1000 \text{ A} \times 11.6 \ \mu\text{T} \times 182.88 \text{ meter}$
 $= 2.12 \text{ N}$
 $= 7.62 \text{ oz}$

I have used 600' = 182.88m, and 1N = 3.586 oz. This force is small compared to gravity loads and windage loads.

Now we find the electrostatic attraction terms.

I use the principle of virtual work with parallel plate capacitors approximated by the 2 in diameter conductors separated by 18 feet. I model the capacitor as a flat ribbon with 18 feet separation. The curvature of the cylindrical conductor introduces a small error of the order 2in/18ft = 0.9%, so no problem.

$$E = \frac{1}{2}CV^2$$
$$= \frac{1}{2}\frac{\epsilon A}{d}V^2$$

where A = 2 inch by 600 ft, and d is 18 ft. Using the principle of virtual

work, the attractive force between the capacitor plates is

$$\vec{F} = \nabla E$$

$$= \frac{\partial}{\partial d} \left(\frac{1}{2} \frac{\epsilon A}{d} V^2 \right)$$

$$= -\frac{1}{2} \frac{\epsilon A}{d^2} V^2$$

$$= -(1/2)((8.854 * 10^{-12} * 182.88m * 0.0508m)/(5.48m * 5.48m))(10^6 V)^2$$

$$= -1.36955 \text{ N} = -4.92 \text{ oz}$$

Again, for this example, the electrostatic forces are neglible compared to gravity and windage.

Balance Magnitudes of Attraction and Repulsion

We can imagine a more compact system, where the electrostatic and magnetic forces become significant. We can balance mechanical forces from repulsion and attraction by operating at a specific current to voltage ratio. In effect, there will be a characteristic impedance associated with this force balanced system. We will have a transmission line in the classical sense.

$$F'_{\text{mag}} = F'_{\text{electrostatic}}$$

$$\frac{\mu_0 I^2}{2\pi} \frac{L}{d} = \frac{1}{2} \frac{\epsilon (L * \text{WireDiameter})}{d^2} V^2$$

$$\left(\frac{V}{I}\right)^2 = \left(\frac{\mu}{\epsilon}\right) \frac{d}{\pi * \text{WireDiameter}}$$

$$Z = 377 \sqrt{\frac{d}{\pi * \text{WireDiameter}}}$$

If we operate our generator with the impedance prescribed voltage/current ratio, and terminate our load with the same impedance, we can have the force balanced transmission line.

Knowing Murphy's law, a system which needs to be critically balanced to operate (I'm thinking of a pulsed power system), would likely find a way to fail catastrophically.